$\overline{S M S}$

 v. 13.1
SMS 13.1 Tutorial

Cartesian Grid Generation

Objectives

This tutorial gives a brief introduction to generating a Cartesian Grid in SMS.

Prerequisites

- Overview Tutorial
- Map Module Tutorial

Requirements

- Map Module
- Cartesian Grid Module
- Scatter Module

Time

- 5-10 minutes

AQUAVEO

		Introduction .. 2
2		Getting Started ... 2
3		Creating the Cartesian Grid... 3
	3.1	Creating the Cartesian Grid Frame... 3
	3.2	Mapping to the Grid .. 5
		Interpolating to a 2D Grid ... 6
5		Grid Display Options ... 7
6		Conclusion... 7

1 Introduction

This tutorial demonstrates how to create a Cartesian grid in SMS. Some of the models that use Cartesian grids include STWAVE, CMS-Wave, and TUFLOW. This tutorial uses data from Shinnecock Inlet, Long Island, New York, in the United States.

2 Getting Started

The initial project includes a digital elevation map (TIF file) as well as a bathymetric survey scatter dataset of the area around Shinnecock Inlet on the south shore of Long Island, New York.

To open the project, do the following:

1. Select File |Open... to bring up the Open dialog.
2. Browse to the data files folder for this tutorial and select "shinnecock.sms".
3. Click Open to import the project and exit the Open dialog.

The project should appear similar to Figure 1.

Figure 1 Initial project appearance

3 Creating the Cartesian Grid

The next step is to create a Cartesian grid. The grid frame is created in the Map ${ }^{n}$ module, which contains tools for creating GIS objects such as points, arcs, and polygons. It is also used for creating a frame which will be filled in by a Cartesian grid.

3.1 Creating the Cartesian Grid Frame

To create the grid frame:

1. In the Project Explorer, turn on " $\overbrace{}^{\circ}$ Shinnecock".
2. Switch to the Map ${ }^{N}$ module.
3. Right-click "CS Area Property" in the Project Explorer, select Type | Generic| CGrid Generator.
4. Right-click "CS Area Property" and select Rename.
5. Enter "Shinnecock" and press Enter to set the new name.
6. Using the Create 2-D Grid Frame tool, click out three corners of the grid in the order shown in Figure 2 to create the grid frame.

The first two points clicked define the i-direction, which is the direction of the incoming waves, and the last two points clicked are placed on the land.

Figure 2 Creating the Cartesian grid frame
7. Using the Select Grid Frame ${ }^{\text {F }}$ tool, click on the selection box in the middle of the grid frame. The origin should be in the bottom right corner of the grid, as indicated by the arrows (Figure 3).

Figure 3 The origin is at the bottom right corner of the grid
8. Resize the grid frame by dragging the corners or edges until the grid frame fits over the desired area.

Dragging a corner or side resizes the frame. Dragging the middle point moves the entire frame. Rotate the frame around the origin by dragging the circle located at the top right corner just outside the grid.
9. Double-click on the grid frame to bring up the Grid Frame Properties dialog.

The origin and angle can be manually entered in this dialog. This allows for greater precision in placement of the grid.
10. In the Origin, Orientation and Dimensions section; enter "438,000.0" as the Origin X.
11. Enter " $70,000.0$ " as the Origin Y.
12. Enter " 112.0 " as the Angle.
13. Enter " $15,000.0$ " as the I size and " $17,000.0$ " as the J size.

These values can also be edited when generating the 2D grid in section 3.2.
14. Click OK to close the Grid Frame Properties dialog.
15. Click outside the grid frame to unselect the grid.
16. Frame 2 the project.

3.2 Mapping to the Grid

This section covers how to fill in the interior of the grid. While the grid is filling, the depth and current values will be interpolated from the scatter set and mapped to each cell.

To do this:

1. Right-click on "纹 Shinnecock" and select Convert \mid Map \rightarrow 2D Grid to bring up the Map $\rightarrow 2 D$ Grid dialog.
2. Verify the values in the Origin, Orientation and Dimensions section match those given in steps 9-12 in section 3.1.
3. In both the I Cell Options and J Cell Options sections, select Cell size and enter " 100.0 " in the field to the right of each.
4. In the Elevation Options section, select "Raster" from the Source drop-down then click Options... to bring up the Raster Sets dialog.
5. Select "Shin_bathy_2021.tif" from the tree list.
6. Click OK to exit the Raster Sets dialog.

The elevation values will now be interpolated to the final Cartesian grid. Other options can be selected as needed.
7. Click OK to exit the Map $\rightarrow 2 D$ Grid dialog and create the Cartesian grid.
8. In the Project Explorer, hide " ${ }^{\circ}$ Shinnecock".

The project should appear similar to Figure 4.

Figure 4 Cartesian grid
A Cartesian grid has been created from the grid frame．

4 Interpolating to a 2D Grid

It is easy to interpolate elevations when creating the 2 D grid．However，updated elevation values to represent updated surveys or proposed conditions may be desired．．To do this：

1．Right－click on＂$\left[⿰ ⿱ 丶 ㇀ ⿱ ㇒ 丶 幺 十_{++}^{+\infty}\right.$ Shinnecock＂and select Interpolate to．．．to bring up the Interpolation Options dialog．

2．In the Interpolate from section，select＂滓 elevation＂from the tree list．
3．Change the New name column from＂elevation＂to＂new elevation＂．This will be the name of the new dataset on the grid．

4．Turn on the Map Z toggle box to indicate that this should be the elevation dataset （the z values）for the grid．

5．In the Interpolate to section，select＂Shinnecock Grid＂
6．Click the Options button next to Interpolation method at the bottom of the dialog to open the Interpolate－Linear dialog．
7．Change the Value in the Extrapolation section to＂ 1.0 ＂to represent dry land．
8．Click OK to close the Interpolate－Linear dialog．
9．Click OK to close the Interpolation Options dialog．
SMS brings up a warning that around 6153 cells were assigned values from the extrapolation value．This is because these cells do not lie inside the extents of the scatter set．
10. Click OK to close the warning.

The "閖 elevation" dataset on the scatter set has now been interpolated to the Cartesian grid as " $Z]$ new elevation". It has also been assigned to be the " Z " dataset. The old dataset still exists on the grid as a regular scalar dataset.

5 Grid Display Options

To view only the grid:

1. Frame the project.
2. Right-click on the " $-\mathbf{}$ Cartesian Grid Data" object in the Project Explorer and select Display Options... to bring up the Display Options dialog.
3. On the Cartesian Grid tab, click All Off and turn on Contours.
4. On the Contours tab, in the Contour method section, select "Color Fill" from the first drop-down.
5. Click on the Color Ramp... button. This brings up the Color Options dialog.
6. Select User defined as the Palette Method and select the "Atlas Shader" palette on the right side.
7. Click OK to close the Color Options dialog.
8. Turn on the Specify a range option
9. Enter "- 40 " for Min and " 15 " for Max.

This corresponds to 40 meters below sea level as dark blue and 15 meters above sea level as red.
10. Click OK to close the Display Options dialog.
11. Switch between the two datasets under the "囲 Shinnecock Grid" to visualize the different elevations.

6 Conclusion

This concludes the "Cartesian Grid Generation" tutorial, which showed how to create a Cartesian grid using the Cartesian grid generator coverage. It also showed ways to interpret elevation to a Cartesian grid.

